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The hydrogen plasma is studied in the very high density~atomic and metallic! regime by extensiveab initio
molecular dynamics simulations. Protons are treated classically, and electrons in the Born-Oppenheimer frame-
work, within the local density approximation to density functional theory. Densities and temperatures studied
fall within the strong coupling regime of the protons. We address the question of the validity of linear
screening, and we find it yields a reasonably good description up tor s'0.5, but already too crude forr s51
~with r s5(3/4pr)1/3 the ion sphere radius!. These values are typical of Jovian planets interiors. Finite-size and
Brillouin zone sampling effects in metallic systems are studied and shown to be very delicate also in the fluid
~liquid metal! phase. We analyze the low-temperature phase diagram and the melting transition. A remarkably
fast decrease of the melting temperature with decreasing density is found, up to a point when it becomes
comparable to the Fermi temperature of the protons. The possible vicinity of a triple point bcc-hcp~fcc!-liquid
is discussed in the region ofr s'1.1 andT'1002200 K. The fluid phase is studied in detail for several
temperatures. The structure of the fluid is found to be reminiscent of the underlying bcc~solid! phase. Proton-
electron correlations show a weak temperature dependence, and proton-proton correlations exhibit a well-
defined first coordination shell, thus characterizing fluid H in this regime as an atomic liquid. Diffusion
coefficients are computed and compared to the values for the one-component plasma. Vibrational densities of
states~VDOS! show a plasmon renormalization due to electron screening, and the presence of a plasmon-
coupled single-particle mode up to very high temperatures. Collective modes are studied through dynamical
structure factors. In close relationship with the VDOS, the simulations reveal the remarkable persistence of a
weakly damped high-frequency ion-acoustic mode, even under conditions of strong electron screening. The
possibility of using this observation as a diagnostic for the plasma phase transition to the fluid molecular phase
at lower densities is discussed.@S1063-651X~96!01506-1#

PACS number~s!: 52.25.Kn, 05.30.Fk, 64.70.Dv

I. INTRODUCTION AND STATE OF THE ART

The possibility of hydrogen metallization under high pres-
sure was first discussed by Wigner and Huntington in the
thirties @1#. This particular subject was included in the more
general conjecture that any system becomes metallic if suf-
ficient pressure is applied. Electrons, which are bound in the
isolated atomic or molecular species, hybridize in a con-
densed phase to form extended states which gather in energy
bands. When pressure is applied, the bands widen due to the
enhancement of the overlap between neighboring atoms’ or-
bitals, up to the point at which the energy gap between the
valence and the conduction band vanishes, thus giving rise to
metallic behavior. This enhancement of the overlap can also
be viewed as the growing importance of the electronic ki-
netic energy relative to the ion-electron potential; the latter
tends to bind electrons to the ions~also in the form of inter-
atomic, intramolecular or intermolecular bonds!. In the case
of pure hydrogen, metallization was estimated to occur
around 2.5 Mbars~1 Mbar5 100 GPa!, i.e., at pressures that
have become accessible to experiment in diamond anvil cells
only very recently@2#. The absence of clear signs of metallic
behavior up to 2.9 Mbar@3,4# certainly adds to the challenge,
and stimulates the continuous improvement of experimental
setups in the search for thereluctantmetallization.

An additional difficulty in the description of this particu-

lar metal-insulator phase transition arises from the fact that at
low pressures the low-temperature phase is not a mono-
atomic but a molecular solid, i.e., a hexagonal-close-packed
~hcp! arrangement of H2 molecules@2#. In this sense, H be-
haves more like a halogen than like an alkali metal@5#. Up to
pressures of the order of 1 Mbar, experiment indicates that
the hcp arrangement is preserved. At pressures of the order
of 110 GPa, the low-pressure free-rotator phase of para-H2

freezes into an orientationally ordered phase, whose nature is
not yet fully understood. The observation of more than one
vibron mode@6# precludes the hcp structure with all the mol-
ecules pointing along thec axis. However, other more com-
plex hcp structures with tilted molecules~herringbonelike!
are compatible with the experiment@2#. It is also possible
that the orientational order is not complete, thus giving rise
to a sequence of weak phase transitions until the perfectly
ordered phase is reached.

An intriguing phase transition at 150 GPa, signalled by a
discontinuity in the molecular vibron@7#, has been ascribed
either to a relative reorientation of the H2 groups @8#, to
metallization arising from an electronic band-overlap mecha-
nism without molecular reorientation@9#, and to both occur-
ring at the same time@10#. Density functional~DFT! calcu-
lations indicate that arrangements with complex molecular
orientations~nonparallel! are energetically preferred in the
high-pressure phase@8#. Another study@11# concentrated on
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other classes of structures including cubicPa3 and rutile,
and also two molecular hcp structures with different relative
orientations in the alternate planes, namely,Pca21 and
P21 /c. The hexagonalPca21 was found to be the favorable
one above the 150 GPa transition. Very recently, Tse and
Klug performedab initio simulated annealing calculations
with 96 H atoms in the supercell, and found as a ground state
an orthorombic structure, instead of hcp, composed of
groups of three strongly interacting H2 molecules@12#. All
these candidates were found to be insulating, and the reason
for this was claimed to be the opening of a hybridization gap
at the Fermi level@13#. Diffusion Monte Carlo~DMC! cal-
culations by Natoli, Martin, and Ceperley@14# have essen-
tially confirmed results by Kaxiras, Broughton, and Hemley
@8#, also at the quantitative level for the angles between dif-
ferent molecular units. They considered neither Nagara’s
Pca21 nor Tse’s orthorombic structure. This DMC calcula-
tion also finds an insulating behavior and, interestingly, zero-
point-motion effects due to the protons appear to be quite
structure independent. As a consequence, zero-point motion
would turn out to be irrelevant as regards the 150 GPa tran-
sition, contrarily to the claims of Surh, Barbee, and Mailhiot
@10#.

Well-converged local density functional~LDA ! calcula-
tions supplemented with the zero-point energy contribution
taken from their frozen-phonon calculations@15#, suggest
that the molecular-hcp phase goes over directly to an atomic
squeezed-hexagonal phase, by breaking the intramolecular
bonds, at a pressure of 380 GPa. However, this calculation
did not take into account nonhexagonal structures. Hence,
also from the theoretical point of view, it is not clear up to
now whether metallization happens already in the molecular
phase, or whether it is a consequence of dissociation, thus
occurring simultaneously with the molecular-atomic transi-
tion @3#. A rhombohedral structure was also postulated to
supersede the squeezed-hexagonal phase at higher pressures
~above 400 GPa! @16#, while the transition to a body-
centered-cubic~bcc! phase was located at around 1100 GPa
@15#.

In general, static methods suffer from the drawback of
having to carry out the investigation byguessingdifferent
structures. In this respect, the molecular dynamics~MD! re-
sults by Tse and Klug seem to be the most reliable. However,
there is still some doubt because it is not obvious that their
96-atom supercell withG-point sampling and fixed cell vol-
ume and shape calculation is a sufficiently good description.
A recently proposed method that combines state-of-the-art
electronic structure calculations with a variable cell shape
MD simulation @17#, thus avoiding every undesired bias, is
currently being used to investigate the low-temperature
phase of H as a function of pressure@18#.

It is important to remark that, in general, energy differ-
ences between different structures are quite small, so that
different levels of approximation often lead to different
ground-state structures. In this respect, fully quantum-
mechanical DMC calculations are very indicative. Ceperley
and Alder@19# located the molecular-to-atomic phase transi-
ton at a pressure of about 300 GPa, by studying only cubic
structures. Further refinements of these DMC calculations
have shown how dramatic the effect of improving the de-
scription can be@20#. Eventually, it appears that the atomic

ground-state structure in the vicinity of the molecular-atomic
transition is the diamond structure, but the energy difference
with respect to others is very small and, in particular, with
respect tob-Sn and hexagonal diamond, it is well within the
error bars. The diamond structure was considered as a can-
didate for the ground state in one of the previous DFT cal-
culations, but found to be less favorable than a distorted
hexagonal phase@15#.

The monoatomic bcc structure is unequivocally identified
as the ground state in the very high density limit. There, the
electronic kinetic energy is largely dominant over the re-
maining contributions, such that the electrons behave essen-
tially as free fermions; i.e., the electronic subsystem de-
couples from the protons and becomes a rigid, homogeneous
electron gas, which acts only as a neutralizing background
for the protons. This is well known as the one-component
plasma~OCP! model, whose classical version was shown to
crystallize into the bcc structure. This follows from a simple
calculation of the Madelung energy, although the energy dif-
ferences relative to other structures turn out to be rather
small. In the classical OCP, which was thoroughly studied
during the past two decades@21#, the bcc structure turns out
to be the stable one also at finite temperature and up to the
melting point. The quantum version of the OCP at finite
temperatures has not yet been studied in detail. A numerical
study using the path integral Monte Carlo technique~PIMC!
is currently under development@22#.

At higher temperatures the protons begin to behave as
classical particles. The degeneracy temperature for the pro-
tons can be estimated to be of the order ofTd

p'180 K/r s
2 ,

~with r s the dimensionless density parameter—see below! by
comparing the mean interprotonic distance and the thermal
de Broglie wavelength. The electron degeneracy temperature
(Td

e) lies well above~by a factormp51836) such that, at
temperatures lower thanTd

e'326000 K/r s
251 hartree/r s

2 ,
electrons can be considered to follow the protons adiabati-
cally, always staying in the ground state compatible with the
current protonic configuration~Fermi temperatures are about
twice these numbers, e.g.,TF

p5326 K/r s
2). This latter ap-

proximation allowed Hohlet al. @23# to examine the hot,
densemolecularphase by means ofab initio molecular dy-
namics~AIMD ! simulations, and also to make some progress
regarding the low-temperature structure. The AIMD study of
the atomic phase is the subject of this and of a previous
publication@24#. The effect of excited electronic states in the
same regime has very recently been explored by an AIMD
scheme using Mermin’s density functional@25#, and the fully
quantum PIMC method was applied to simulate the very
high-temperature fluid phase@26#, where the number of ex-
cited electronic states involved becomes too large to be
treated efficiently with Mermin’s functional. The low-
temperature regime, where protons in turn become degener-
ate, requires different simulation techniques which are cur-
rently being developed@27#.

High-temperature high-pressure measurements on hydro-
gen have been very recently reported in shock wave experi-
ments@28#. Pressures between 1 and 2 Mbar and tempera-
tures of some thousand K are now feasible and rather
controllable, and further expansion of this range is in sight.
In such experiments, Nelliset al. observed the metallization
of fluid molecular hydrogen atP51.4 Mbar and
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T53000 K, a temperature which is significantly lower than
that predicted for the plasma phase transition by Chabrier
et al. @29# on the basis of a multicomponent thermodynamic
theory that employs an approximate equation of state. Al-
though more accurate PIMC simulations have essentially
confirmed the predictions of the theory, including the exist-
ence of a first order phase transition at high pressures and a
somewhat lower value for the transition temeprature@30#, the
discrepancy with respect to shock wave experiments and
AIMD results @31# still holds. The latter would rather indi-
cate a continuous transition in which metallization and dis-
sociation of H2 molecules are closely related phenomena. A
possible scenario would be the existence of two phase tran-
sitions: a continuous one, at relatively low temperatures,
where molecular hydrogen already metallizes and begins to
dissociate, and a discontinuous one at higher temperatures
where a massive dissociation occurs with a concomitant
jump in the electrical conductivity.

Hydrogen at finite temperatures and high densities con-
situtes, hence, a strongly coupled proton-electron plasma
which is of great astrophysical interest since it is, in particu-
lar, the major constituent in Jovian planet interiors. Actually,
the latter are basically H plasmas with a few percent admix-
ture of He, and the statistical properties of the mixture
~mixing-demixing transition! are of great importance to ac-
count for experimental observations and to establish models
for the evolution of these planets@32#. Nevertheless, the an-
swer to many relevant questions in astrophysics requires a
full understanding of the statistical properties of the pure
main constituents. Hydrogen is present in both atomic and
molecular fluid phases. These are separated by a boundary
located at some distance from the center of the planet. The
characteristics of this boundary, e.g., precise location, width,
etc. depend on the density and temperature profile, i.e., on
the equation of state. The matter of dissociation and metalli-
zation is particularly relevant because the large magnetic
field measured in Jupiter would include a non-negligible
component generated in the outer molecular fluid phase, pro-
vided that temperature is above the metallization threshold.
To quantify this effect the important quantities are the disso-
ciated fraction and the electrical conductivity, which can be
obtained from simulations in the molecular phase.

The hydrogen plasma is perhaps the most fundamental,
simple many-body system, withall the interactions~proton-
proton, proton-electron, and electron-electron! described ex-
actly by thebare Coulomb potential. In spite of this, the
phase diagram appears to be surprisingly rich. The purpose
of this article is to present a detailed study of the very high-
pressure physical properties and phase diagram of this
simple and fascinating system. We are going to deal always
with atomic phases, the molecular phases appearing at lower
densities than those studied here. In Sec. II we briefly de-
scribe some details of the simulations, and we address some
important technical issues such as the interplay between
pseudopotentials and basis set expansions. Section III is de-
voted to the analysis of the validity of linear response theory
in its ability to describe proton-proton interactions in terms
of an effective pair potential of the screened Coulomb form.
In Sec. IV we address a crucial problem that arises in theab
initio simulation of metallic systems, in particular liquid met-
als, i.e., size effects and Fermi surface sampling. In Sec. V

we enter directly into the properties of the hydrogen plasma
by describing the solid phases and the melting at very high
pressure. Section VI is concerned with the fluid phase, which
we characterize as atomiclike. Diffusion and vibrational
properties are presented in Sec. VII, while Sec. VIII is de-
voted to a thorough study of the collective dynamics, as an
approach to the metal-insulator transition coming from the
metallic side. The behavior of the longitudinal collective
mode is studied as a function of density and temperature, and
proposed as a probe for the metal-insulator transition at finite
temeprature. Finally, we conclude in Sec. IX. In the remain-
ing part of this Sec. I we define some useful parameters and
ratios.

The plasma is made up ofn electrons and as many ions
~protons! per unit volume, such that the usual dimensionless
density parameter isr s5a/aB5(3/4pn)1/3/aB , wherea is
the mean interionic distance~ion-sphere radius! andaB is the
bohr radius. Adopting atomic units throughout, the Fermi
momentum is kF5(9/4p)1/3/r s , and the Thomas-Fermi
screening length iskTF5(12/p)1/3/Ar s. The dimensionless
Coulomb coupling constant associated with the classical ions
is G5e2/(akBT). Note thatkBT51/(Gr s), and that the elec-
tron degeneracy parameter isu5T/TF52(4/9p)2/3r s /G.
Typical densities inside Jovian planets are between 1 and 10
g/cm3 and temperatures are of the order of 100 to 10000 K,
i.e., r s ranging from 0.5 to 1.5, andG'202200 @21#. Note
that within this rangeu'0.015!1 and for the present cal-
culations, whose aim is precisely to address some aspects of
astrophysical plasmas, we can resort to the adiabatic approxi-
mation by assuming that the electrons are always in their
instantaneous ground state for any given ionic configuration.
Higher temperatures require the relaxation of this hypothesis.

II. TECHNICAL DETAILS OF THE SIMULATIONS

Our simulations were carried out using the standard Car-
Parrinello ~CP! AIMD scheme@33#. The ions were consid-
ered as classical pointlike particles, whereas the electrons
were described by density functional theory~DFT! within
the local density approximation~LDA ! @34#. The electronic
density was constructed via Kohn-Sham single-electron or-
bitals, expanded in a plane wave basis set up to a specified
energy cutoffE cut ~see below!. We have extensively studied
a system consisting of 54 H atoms contained in a simple
cubic simulation box under periodic boundary conditions
~PBC!, and we have also performed simulations for larger
supercells, containing 128 and 162 H atoms, in order to ana-
lyze finite-size effects. The plane wave expansion was car-
ried out around theG point of the supercell’s Brillouin zone.
Finite-size and Brillouin zone sampling effects will be ana-
lyzed later, in a forthcoming section.

We used the exchange-correlation functional deduced
from the results of quantum Monte Carlo calculations on the
uniform electron gas@36#, and the bare Coulomb potential
for the ion-electron interaction. The singularity of the ion-
electron Coulomb attraction implies that there is never abso-
lute convergence of the electronic quantities as the energy
cutoff for plane waves is increased. In particular, the cusp
condition is never satisfied, the density reaching the origin
with zero slope. This is because the Fourier expansion of
1/r is also a long-range function (4p/g2), meaning that there
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always exists a spatial scale small enough to require a rep-
resentation involving large-g components. To satisfy the
cusp condition, a different~localized! basis set is needed
instead of plane waves, e.g., Slater-type orbitals@37#. A fi-
nite cutoff gcut5A2E cut(Ry) translates into the following
effective potential:

veff~r !5
1

r S 12
2

pEg cut

` sin~x!

x
dxD . ~2.1!

This description is variational in the number of plane
waves ~i.e., in the energy cutoff! and, even if the energy
never fully converges, other quantities, like the electronic
distribution around the protons, are affected only in a tiny
region around the nuclei, the remainder being essentially
converged at a finite cutoff. This is shown in Fig. 1 for pro-
tons fixed at the ideal bcc lattice sites. The choice of the
cutoff strongly depends on the average density: the lower
r s , the higher the cutoff. It is the number of plane waves
which has to be kept approximately constant in order to
achieve similar levels of convergence. In order to have the
electronic density correctly described from less than one
third of the nearest-neighbor ionic distance onward, we de-
cided to vary the cutoff between 230 Ry forr s50.5 and 60
Ry for r s51 and 1.2. It can be seen in Fig. 1 (r s50.5) that
differences in the proton-electron correlation function be-
come noticeable at distances smaller than 0.5a, while the
nearest-neighbor distance in the bcc lattice isdnn51.76a. It
should be pointed out that a cutoff of 60 Ry is sufficient to
achieve convergence in the properties of the H2 molecule,
like the proton-proton distance~1.5 a.u.5 0.79 Å! and the
vibrational frequency~4160 cm21). The difference with re-
spect to the experimental quantities~0.74 Å and 4400
cm21) may be ascribed exclusively to the LDA.

Isothermal ionic dynamics~particularly in the fluid phase!
was achieved by using a Nose´-Hoover thermostat. The time
step for integration of the CP equations of motion was cho-
sen typically between 0.25 and 1.5 a.u.~depending on the

temperature and density!, i.e., roughly 10217 s, compared to
the ionic plasma periodtP'155 r s

3/2 a.u. . In some cases
another Nose´ thermostat was necessary to keep the fictitious
kinetic energy of the electronic degrees of freedom at low
values. Most runs extended over 0.4 to 0.6 psec, which
amounts to more than 50 plasma oscillations. Before this, we
allowed for the thermal equilibration during an initial period
of 0.2 psec in the solid phase, and 0.8 to 1.2 psec in the fluid
phase. The densitiesr s50.5, r s51, and r s51.2 were ex-
plored in detail for temperatures in the range 100 K
<T<10 000 K, which correspond to the strong coupling re-
gime (G>30), and cover both fluid and solid phases of the
ionic component. In particular,r s'1 and T'7000 K are
typical conditions inside Jovian planets@38#. The simulations
at r s51.2 were carried out only in the fluid phase because
the stable solid no longer has the bcc symmetry, and thus it is
not compatible with the choice of 54 H atoms in a simple
cubic supercell.

III. VALIDITY OF LINEAR RESPONSE THEORY

In the very high density limit (r s→0) the electrons are
barely polarized by the ionic charge distribution, due to their
rapidly increasing Fermi energy, and the hydrogen plasma
practically reduces to two decoupled components: a classical
ionic ‘‘one-component plasma’’~OCP!, and a degenerate,
rigid electron ‘‘jellium.’’ Both systems have been exten-
sively studied by classical@21# and quantum@36# computer
simulations. For finite, but smallr s (r s!1), the coupling
between the two components may be treated perturbatively
within linear screening theory@39#. However, due to the
strength of the unscreened Coulomb interaction between pro-
tons and electrons, such a perturbative approach is expected
to break down rapidly asr s increases. In this section we
investigate the high density limit and the validity of the de-
scription of the hydrogen plasma in terms of a linear re-
sponse picture~LRT! for the electronic component.

To this end we compare the proton-electron pair correla-
tion function taking into account the full LDA response:

gpe~r !52
V

N2E dk^r i~k!re~2k!& j 0~kr ! ~3.1!

and the one obtained by replacing the electronic charge den-
sity by its linear response expression in terms of the ionic
charge density

re~k!5xe~k!S 2
4p

k2 D r i~k!, ~3.2!

wherexe(k) is the static electron density response function.
In Eq. ~3.1!, j 0(x) denotes thel50 spherical Bessel func-
tion, r i(k) is a Fourier component of the microscopic ionic
density, andre(2k)5re* (k) is a Fourier component of the
electronic density corresponding to the instantaneous ionic
configuration$RI%. The latter represents, within the adiabatic
approximation, a ground-state expectation value.

For the density response we adopt the random phase ap-
proximation~RPA! corrected by the long wavelength limit of
the local field functionG(k) @21#

FIG. 1. Electron distribution around the proton site for H in the
perfect bcc structure atr s50.5, as a function of the plane wave
energy cutoff. Dotted, dash-dotted, and solid curves correspond to
cutoffs of 60, 230, and 420 Ry, respectively.
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4p

k2
xe~k!5

kTF
2 l ~k/kF!

k21kTF
2 l ~k/kF!@12G~k/kF!#

, ~3.3!

with l (x) the Lindhard function andkTF the Thomas-Fermi
wave number. For the local field correction we use the fol-
lowing expression, which is consistent with the LDA and
Slater’s local exchange:

G~k/kF!5F142
pl

24 S r s3d2ec~r s!drs
2 22r s

2dec~r s!

drs
D Gk2kF2 ,

~3.4!

where the correlation energy densityec(r s) is that proposed
by Perdew and Zunger@40#, and l5(4/9p)1/3. At typical
densities studied in this work the exchange contribution to
G(k/kF) turns out to be largely dominant over correlation,
and both of them represent a small correction relative to the
RPA susceptibility. In fact, this is reasonable because the
RPA ~or Lindhard approximation! is known to be good in the
high density limit.

The proton-electron distribution function reads accord-
ingly

gpe
LR~r !5

V

N2E dk^r i~k!r i~2k!& j 0~kr !

3S kTF
2 l ~k/kF!

k21kTF
2 l ~k/kF!@12G~k/kF!#

D . ~3.5!

In Fig. 2 we compare the proton-electron radial distribu-
tion functions in the ideal bcc structure as obtained from the
LDA and from LRT, for r s50.5 andr s51. As expected,
gpe(r ) is considerably more structured at the lower density.
The LDA and LRT distribution functions are very close at
r s50.5, but significant differences are clearly apparent at
r s51, reaching a region beyond the first ionic shell and sig-
naling the breakdown of the linear screening regime. When
the ions are at finite temperature the differences are signifi-
cantly enhanced, particularly at short distances. Also the lo-

cation of the first minimum turns out to be shifted outwards
by LRT in the fluid phase~unlike in the solid phase!, thus
indicating that the LRT description of the electronic charge
distribution worsens for increasing temperature. This is
shown in Fig. 3. The dashed curves have been obtained by
averaging the adiabatic electronic charge distribution around
the protons along the AIMD trajectory, assuming that the
configurations generated in this way are also representative
of the LRT. In fact, the magnitude of the differences ob-
served in Fig. 3 suggests that the LRT trajectories will differ
significantly from the LDA ones, implying that this averaged
electronic distribution might be meaningless within LRT. In
other words, the fully consistent LRT is likely to be worse
than the results presented here.

Following a recently introduced procedure@41# we have
fitted, for r s51, an effective proton-proton pair potential to
our set of AIMD configurations generated at several tem-
peratures spanning both solid and fluid phases. In Fig. 4 we
compare this potential to the one obtained within LRT, i.e.,
by Fourier transformingvLRT(k)54p@12xe(k)#/k

2, where
xe(k) is given by expression~3.3!. The nearest-neighbor dis-
tance in the bcc structure forr s51 is 1.76 a.u., and the

FIG. 2. Electron distribution around the proton site for H in the
perfect bcc structure atr s50.5 ~lower curves! and r s51 ~upper
curves!, according to LDA~solid lines!, and within linear response
~dashed lines!. Distances expressed in units of the ion-sphere radius
a5r saB .

FIG. 3. Electron distribution around the proton site for H at
T52000 K according to LDA~solid line! and LRT ~dashed line!,
for r s51 ~lower curves! and r s51.2 ~upper curves!.

FIG. 4. Effective pair potentials for the proton-proton interac-
tion at r s51: vLDA fitted to AIMD trajectories~solid line!, and
vLRT obtained within the RPA with local field corrections~dashed
line!.
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position of the first peak in the proton-proton radial distribu-
tion function decreases down to values of the order of 1.5
a.u. in the fluid phase and upon heating~see below!. This
means that nearest pairs of protons will spend most of the
time at distances of this order. Looking carefully at Fig. 4 it
can be seen that, at those distances, the two potentials differ
by more than 10%, the LDA one being steeper. On the other
side, the LRT pair potential appears to be more long ranged
than the LDA one. This implies that the LDA pair potential
has a characteristic screening length shorter than its LRT
counterpart, i.e., screening is more efficient than linear at
r s51.

The departure from the linear screening regime, also in
the form of many-body effects beyond the pair potential ap-
proach~e.g., three-body terms or embedding functions!, be-
comes more pronounced asr s is increased, leading to
ground-state atomic phases other than bcc, fcc, or hcp~e.g.,
hexagonal and diamond! and, eventually, to recombination
and to the different H2 molecular phases. The reason for this
early departure from the LRT regime has to be traced back to
the unusual strength of the bare Coulomb interaction, arising
from the absence of core electrons. In fact, other alkali met-
als can be reasonably well described by LRT at much lower
electronic densities (r s.3) @42#. Interestingly, the range of
validity deduced here for the LRT is much wider than ex-
pected in previous theoretical work based on perturbative
expansions@39#, wherer s50.1 was identified as the upper
limit.

IV. SIZE EFFECTS AND FERMI SURFACE SAMPLING

In the solid phase, the combination ofG point sampling
and a finite system size is not expected to provide a very
accurate description of the electronic component, because all
the periodicities beyond the size of the supercell are not
properly included. This is particularly important in metallic
systems, where no point in the Brillouin zone can be taken as
representative of the band structure of the bulk solid. The
reason is that occupied states~contributing to the electronic
density! and empty states~which do not contribute! coexist
in the same band, corresponding to differentk points. A
particular choice~e.g., theG point and its refolded images!
will sample the conduction band in some specific points, but
the character of the Fermi surface could be misinterpreted if
empty states are taken as if they were occupied and vice
versa. For quasispherical Fermi surfaces this is unlikely to
happen, but for transition metals or semimetals~like graph-
ite! this effect is crucial, and a very fine sampling of the
Brillouin zone is needed to obtain the right physics.

In the case of simple metals the effect of quantization of
the electronic states in the simulation box is more important.
The Brillouin zone of the unit cell is sampled with a finite
number of points, which arise from the refolding of theG
point of the supercell. These points reflect the symmetries of
the system in the sense that, if theG point refolds onto some
point k0 , then all the points in the star ofk0 must arise from
some other refolding ofG. Otherwise, the symmetry is bro-
ken and spurious forces appear that drive the system away
from the symmetric ground state. Depending on the case at
hand, the distortion can be rather large, especially if the sym-
metry of the supercell is very different from that of the unit

cell. If the correct symmetry is used for the supercell then,
since all the points in the star are equivalent, the eigenvalues
associated with them are degenerate, thus giving rise to the
formation of electronic shells. If a better sampling of the
Brillouin zone is performed, or the size of the system is
increased, new shells appear that eventually give rise to a
continuous energy band. But for finite systems and restric-
tion to theG point, the electronic density of states consists of
a set of discrete peaks~the shells!. A problem arises with the
highest occupied shell because in finite-size metallic systems
it is partially occupied, unless a very fortuitous situation oc-
curs. The immediate consequence is that it is not possible to
fullfil the symmetry requirements by occupying all the points
in the star with anintegernumber of electrons. Then, unless
fractional occupation is introduced, the symmetry is broken
even when the symmetry of the unit cell is mantained for the
supercell. This is analogous to the Jahn-Teller effect in mo-
lecular systems, where a lower-energy state can be obtained
by reducing the symmetry and breaking the electronic degen-
eracy. However in the present case this effect is unphysical.

In a fluid phase these effects are normally expected to
become less important because of the breakdown of the dis-
crete translational invariance, as reflected in the very exist-
ence of a finite Brillouin zone via Bloch’s theorem. The unit
cell becomes of infinite size and the Brillouin zone reduces
to a single point, i.e., theG point. However, for practical
reasons, computer simulations are bound to represent the in-
finite ~fluid! system with a limited number of particles~typi-
cally of the order of some hundreds inab initio calculations!,
while repeating periodically the supercell~via PBC!. In fact,
this introduces a spurious Brillouin zone, which is associated
with periodicities that are absent in the infinite fluid. The
properties of the fluid are assumed to be recovered from the
finite sample in terms of the PBC combined with statistical
averages, which in the case of our AIMD simulations are
computed as time averages.

This is a reasonable justification for a purely classical
system and also for liquid semiconductors but, for metallic
systems, as soon as electronic states are introduced, the
quantization of these states in the~unphysical! simulation
box acquires a crucial role. The problem of partial occupa-
tion of the star persists in the fluid, in the sense that spurious
forces appear that modify in a nontrivial way the structural
and dynamical properties of the system.

A qualitative picture of the consequences of these obser-
vations can be obtained by comparing the proton-proton ra-
dial distribution function for systems of different sizes. A
system of 54 H atoms~of valence charge equal to 1! is really
a fortuitous case of compatibility of a closed electronic shell
~the whole star is fully occupied! with a bcc atomic arrange-
ment in a simple cubic supercell. In the case of 128 H atoms
only 57 states are doubly occupied, and the next shell of 24
degenerate states has to accomodate 14 electrons~i.e., only
30% of the shell!. On the contrary, 162 H atoms is not com-
patible with a bcc arrangement in a simple cubic supercell,
but it closes the former electronic shell thus amounting to 81
doubly occupied states. Therefore, in the fluid phase it
should behave essentially as the 54-atom supercell but better
converged in system size~or k points!. In Fig. 5~a! we show
the curves corresponding to these three different system sizes
at r s51 andT51000 K. In fact, up to the boundary of the
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54-atom cell (r53 a.u.! there is hardly any relevant differ-
ence between thegpp(r ) corresponding to 54- and 162-atom
supercells. The same kind of picture holds also at higher
temperatures, meaning that, as regards static thermodynamic
properties, 54 H atoms already give a very reasonable pic-
ture.

Very different is the situation with open-shell systems like
the 128 H atoms one@short-dashed line in Fig. 5~a!#. It is
clear that thisgpp(r ) has little to do with those of 54 and 162
atoms. The first peak is significantly lower and broader, and
also its position is shifted downwards. The first valley is
much shallower and, in practice, the pair distribution be-
comes structureless beyond it, while with 162 atoms the
atomic-shell structure is still visible at least up to the second
valley. The 128-atom distribution resembles, in fact, the one
that would have been obtained with closed shells at a higher
temperature value.

The correct way to account for open-shell structures at
finite temperature is to doubly occupy the lowest-lying elec-
tronic states at every time step of the AIMD simulation,
while keeping empty the rest of that shell. The curves in Fig.
5~a! have been obtained by applying the standard procedure
of considering explicitly, in the description of the electronic

component, a number of electronic states equal to one half of
the number of electrons, i.e., including those strictly neces-
sary. The justification for this approach is that typical tem-
peratures are much lower than the Fermi temperature.
Atomic motion leads to a degeneracy lifting of the order of a
few percent of an eV, implying that the distance between
electronic states is usually much larger than the width of the
Fermi-Dirac distribution; this latter is of the order ofkBT,
i.e., about 0.1 eV atT51000 K. This leads to a symmetry
breaking in the sampling of the Fermi surface, which is ex-
pected to be recovered in terms of statistical averaging. How-
ever, following the approach above, in practical simulation
times we have not noticed a convergence to the closed-shell
picture. In Fig. 6 we show the Fermi-Dirac distribution func-
tion for three different temperatures, namely 1000 K, 5000
K, and 10 000 K, compared to the electronic density of states
averaged along an AIMD run atT51000 K, and to a snap-
shot of the instantaneous Kohn-Sham eigenvalues. It is clear
that the occupation numbers fall from 2 to 0 in an energy
scale narrower than the thermal splitting of the eigenvalues.

The drawback of this kind of approach is that for open
shells the ordering of the states within the highest~partially!
occupied shell changes continuously during the MD evolu-
tion and, in particular, occupied states become empty and
vice versa. The standard CP approach is not able to take into
account this phenomenon, and this is one reason for the well-
known failure in metallic systems, reflected in the energy
transfer between electronic and ionic degrees of freedom
~cooling the ions and heating the electronic orbitals!. The
double Nose´ thermostat proposed by Blo¨chl and Parrinello
@43# helps in fixing the temperature of each of the compo-
nents, but still does not take into account level crossing ef-
fects. To our knowledge, there are three methods capable of
solving this problem: one is to abandon the CP Lagrangian
strategy in favor of a self-consistent minimization at each
time step@44#, a second one is to abandon the description of
the electronic component in terms of single-particle orbitals
to work directly with the electronic density which is, by defi-

FIG. 5. Proton-proton pair distribution function atT51000 K
and r s51 for different system sizes:~a! 54 atoms~solid line!, 128
atoms ~dashed line!, and 162 atoms~dotted line!; ~b! 128 atoms
considering explicitly the whole open shell~81 states!, where the
lowest 64 areinitially occupied~solid line!, 128 atoms considering
explicitly only the 64 lowest occupied states~dashed line!, and 162
atoms~dot-dashed line!.

FIG. 6. Fermi-Dirac distribution function forT51000 K ~solid
line!, T55000 K ~long-dashed line!, andT510000 K~dot-dashed
line!. The electronic density of states associated with the last two
occupied shells is also shown~short-dashed line!, as well as a single
shot of the Kohn-Sham eigenvalues during an AIMD simulation at
T51000 K ~vertical bars!. The EDOS is broadened with a Gauss-
ian window 1 eV wide.
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nition, constructed with the lowest occupied states@25#, and
finally a third one consisting of a rigorous Lagrangian for-
mulation which incorporates the occupation numbers~actu-
ally the conjugate variables, i.e., the Kohn-Sham eigenval-
ues! as dynamical variables@45#. However, this latter
procedure exhibits the odd feature that the fictitious kinetic
energy of the electronic orbitals still increases at the expense
of the ionic component, due to the appearance of low-energy
excitations introduced by the dynamics of the eigenvalues.

An approximate solution can still be found within the La-
grangian approach by evolving explicitly the whole open
shell, but initially occupying — with an integer number of
electrons — only the lowest states of the this shell. This will
approximately take into account level crossing in terms of
mixing of states within the shell, during the time evolution.
The very same mechanism that leads to energy transfer be-
tween ions and electronic orbitals, i.e., the vanishing energy
gap @46#, is responsible for mixing occupied and empty or-
bitals, thus allowing for initially empty states~if explicitly
included! to become occupied and vice versa. Statistical av-
eraging completes the task by generating a more uniform
sampling of the Fermi surface. Figure 5~b! shows how the
results obtained with 128 H atoms can reproduce approxi-
mately those obtained with 54 and 162 H atoms. It has to be
pointed out that this procedure, although not rigorously jus-
tified, has the nice feature that the fictitious kinetic energy of
the electronic orbitals is practically constant, behaving ex-
actly as in systems with a gap, i.e., there is no energy ex-
change between ionic and electronic degrees of freedom.

V. LOW-TEMPERATURE PHASE:
STRUCTURE AND MELTING

In the OCP (r s→0) limit the ionic bcc lattice is known to
be the stable crystalline structure up to melting~which oc-
curs atG'180@21#!. We have studied the stability of the bcc
structure at low temperatures and finiter s by performing
canonical MD simulations; initial conditions were con-
structed by giving the ions a small random displacement
~about 3% of the nearest-neighbor distancednn) from their
alleged equilibrium positions~the bcc lattice sites!. The bcc
structure was found to be dynamically stable against such
displacements at least up tor s50.5. At r s51 the bcc struc-
ture was found to be unstable forT,100 K, where a close-
packed structure appears to be favored. This is consistent
with a description in terms of LRT. In fact, at high densities
the effective LRT potential behaves essentially like a
Yukawa potential

vSC~r !5
1

r
exp~2rkTF!, ~5.1!

while Friedel oscillations are practically negligible. The
phase diagram of a classical system of particles interacting
via the above Yukawa potential~5.1! has been extensively
studied by computer simulations and lattice dynamics@47#.
These calculations point to a bcc-fcc phase transition when
the density-dependent screening wave number increases, i.e.,
when the effective interaction becomes of shorter range. At
T50 the bcc structure is found to be stable up tor s'0.6,
beyond which the fcc phase becomes the stable structure.

The r s at coexistence shifts to higher values at finite tem-
peratures, such that the system goes through a structural fcc-
bcc phase transition as the temperature increases along an
isochore.

The situation here is reminiscent of the behavior of alkali
metals. Na exhibits an hcp ground state, while Li goes from
bcc to fcc and eventually to hcp at very low T. The heavier
alkalis K, Rb, and Cs undergo a structural transition to fcc
upon cooling belowT'5 K. In all these cases the entropic
contribution of the bcc structure, arising from the valley in
the phonon dispersion along the~110! direction, wins over at
finite temperature and stabilizes this phase. This is exactly
what we observe in our simulations for H, where atr s51 the
bcc structure appears to be stable forT.100 K.

Still, the finite energy cutoff, finite system size, and
coarse Brillouin zone sampling may have a large influence
on the stability of the ground-state structure. The study of
this part of the phase diagram deserves special attention be-
cause also zero-point motion effects on the protons have
been shown to influence the stability of different structures at
T50 @20#. Disregarding the problem of zero-point energy
~ZPE!, and only as a check of the present calculations~which
do not include ZPE!, we have performed total energy full
potential-linear muffin tin orbitals~FP-LMTO! calculations
for solid, monoatomic H in the bcc, fcc, and hcp structures,
at r s50.5 andr s51. The energy differences turned out to be
very small, but atr s51 the fcc and hcp structures are sig-
nificantly lower in energy than the bcc. Moreover, the energy
differences are enhanced if a coarse sampling of the Bril-
louin zone is performed. These calculations also identify the
hcp structure as the lowest energy one, but the difference
with respect to the fcc is within the accuracy of the calcula-
tions. The reason for this can be found in Fig. 4. The differ-
ences between fcc and hcp structures begin only at the level
of third nearest neighbors, a region where the effective po-
tential shows only negligibly small Friedel oscillations.

Betweenr s51 and 1.2 a phase transition occurs that takes
the system from hcp to a simple-hexagonal phase with a
compressedc/a ratio ~squeezed hexagonal!. This is compat-
ible with static total energy calculations by Barbeeet al.
@15#, and it is an additional confirmation of the breakdown of
LRT, because pair potentials of the LRT type are not able to
stabilize anisotropic structures like the simple hexagonal. A
more detailed study of the low-temperature atomic phases of
hydrogen is currently under way@18#.

Next, the melting of the ionic crystal was investigated by
gradually increasing the temperature and monitoring the
time-dependent mean square displacement of the ions
^uDr (t)u2&5^ur (t)2r (0)u2&. In the crystalline phase,
^uDr (t)u2& goes over to 2̂udr u2& for sufficiently long times,
where^udr u2&5^ur2Ru2& denotes the static mean square dis-
placement (R are the equilibrium positions of the ions!. In
the fluid phase diffusion sets in, so that^uDr (t)u2&56Dt at
long times, withD the ionic diffusion constant. Atr s50.5
diffusion was found to set in atG'230, which may be iden-
tified with the limit of mechanical stability of the~over-
heated! metastable crystal. The thermodynamic transition oc-
curs at lower temperature~higher G); its location may be
estimated by assuming that the Lindemann ratio
L5(^udr u2&)1/2/d at melting is the same as for the OCP, i.e.,
L'0.15 @35#. This leads toGm(r s50.5)'290 compared to
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Gm(r s50)'180, indicating a strong influence of electron
screening on the melting transition. This confirms recent pre-
dictions based on free energy comparisons, obtained by
means of an approximate density functional theory@35#.

We have also studied the melting transition atr s51
using the same procedure; the melting temperature drops
sharply fromTm(r s50.5)'2200 K to Tm(r s51)'350 K
@Gm(r s51)'930#. This indicates the possible proximity of a
triple point bcc-hcp~fcc!-liquid, analogous to that found for
Yukawa potentials. However, the nonlinearity of the screen-
ing at these values ofr s is likely to bring the triple point
from r s53 @47# to r s'1.1. Moreover, the hcp structure goes
over to a simple hexagonal one atr s somewhere between 1
and 1.2, and this has to be a consequence of the appearance
of anisotropic forces, beyond the level of pair-wise additiv-
ity. The very low value of the melting temperature might
also be related to the appearance of these forces. Interest-
ingly, at r s51 the Fermi temperature of the ionic component
is TF

p5326 K, a value close to the melting point~350 K!.
Therefore, the influence of quantum effects for the protons
on the melting transition cannot be ignored, and will prob-
ably also play an important role in the above structural phase
transition. In particular, they might destabilize the hexagonal
phase in favor of some more isotropic configuration which
has a higher energy within a framework of classical protons.

VI. THE FLUID PHASE: AN ATOMICLIKE PLASMA

Turning to the fluid phase, a quantitative measure of ion-
electron correlations is provided by the sphericalized average
of the ion-electron pair correlation functiongpe(r ), as com-
puted from Eq.~3.1!. The effect of temperature ongpe(r ) is
illustrated in Fig. 7, forr s50.5 andr s51. The distribution
function is seen to be remarkably insensitive toT over the
whole range of temperatures, covering the solid and fluid
phases, as already noticed at lowerG ~higherT) by Dharma-
Wardana and Perrot in the framework of an approximate
static DFT hypernetted chain calculation@48#. The observed

weak temperature dependence implies that the main effect of
ionic thermal motion~electrons are always atT50), is to
enhance the localization of the electronic charge close to the
protons.

This behavior is to be contrasted with the predictions of
higher-level theories that go beyond the Born-Oppenheimer
approximation by including excited electronic states. Both,
fully quantum PIMC@49# and Mermin functional@50# simu-
lations imply that the ion-electron correlations become
weaker as temperature increases. This is to be intuitively
expected, but for temperatures much higher than the ones
studied here. Excited electronic states are much more insen-
sitive to ionic polarization effects, because they correspond
to larger kinetic energies. In this way, for temperatures larger
than a threshold value that can be estimated aroundu50.1,
i.e.,T'60000 K forr s51, the above localization effect due
to ionic disorder starts to be compensated by the effect of
electronic excitations, so that eventually the opposite trend
will take over.

The ion-electron pair correlation functions forall tem-
peratures are seen to intersect at a well-defined~reduced!
distance from the proton site, irrespective of thermal ionic
disorder and almost independently of density. We locate this
value atr *'1.3a, and notice that the ratior * /dnn'0.73 is
related to the ratio of the location of the nodes corresponding
to the first two spherical Bessel functions@ j 0(x) and
j 1(x)#. In fact, the electronic problem can be modeled, in a
very crude approximation, as that of a particle in a spherical
well; the corresponding radial solutions are precisely the
spherical Bessel functions. Temperature effects can be mim-
icked by increasing the relative population of excited states
with respect toj 0(x). However, the location of the node of
j 1(x) ~the leading excitation! relative to j 0(x) ~the ground
state! does not depend on temperature. Since the location of
the nodes is defined in units of the radius of the well, and this
is identified withdnn, which is proportional tor s , the cross-
ing should not depend significantly on density. The first
maximum ofgpe(r ) is clearly associated with the location of
the first coordination shell@the first maximum ingpp(r ) —
see below#, which is quite natural since the electronic density
peaks at the proton sites. It is interesting to notice that dif-
ferences in the electronic screening properties between
r s51 andr s51.2 are significant only in the vicinity of the
protons, up tor'0.5a.

The proton-proton pair correlation function forr s51 is
illustrated in Fig. 8~a!, as a function of temperature. It can be
observed that the first peak remains clamped at the nearest-
neighbor distance (d nn51.76) for temperatures below the
mechanical stability limit@Ts(r s51)' 500 K#, while in the
fluid phase it shifts continuously to shorter distances. The
same plot shows that the location of the first minimum is
quite insensitive to temperature. This, together with the fact
that equivalent results are found atr s50.5, defines quite
univocally a first coordination shell of radiusr f cs'2.4a
~with a the ion-sphere radius!. The integrated number of par-
ticles is shown in Fig. 8~b! as a function of temperature. The
main result is that the first coordination shell contains 14
atoms on average, implying that the short-range structure of
the liquid is quite reminiscent of that of the solid, since the
first coordination shell of the bcc structure~containing first
and second nearest neighbors! also contains 14 atoms. Simu-
lations performed with 162 H atoms show that this is a genu-

FIG. 7. Proton-electron pair correlation function at finite tem-
perature ~solid and fluid phases! at r s50.5 and
T51000, 2500, 5000, and 10 000 K~lower curves!, and atr s51
and T5200, 500, 1900, and 7300 K~upper curves!. The lower
curve of each set corresponds to the lower temperature.
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ine feature and not an artifact of the small system size. A
second coordination shell is also well defined in the fluid
phase provided that the temperature is low enough, i.e.,
T,1500 K (G.200), as can be observed in Fig. 9. How-

ever, the fluid becomes structureless beyond the first coordi-
nation shell at temperatures of the order of 5000 K~at
r s51). Summarizing, the fluid phase of the H plasma at
moderately high temperatures and very high densities~typi-
cal of the inner H shell of Jovian planets! behaves like an
atomic liquid with a well-defined first coordination shell.

The influence of electron screening is also apparent when
comparing the ion-ion and charge-charge static structure fac-
torsSii (k) andSZZ(k). While at r s50.5, the two are nearly
indistinguishable, the amplitudes of their main peaks differ
significantly for r s51 ~by roughly 9%!, andr s51.2 ~12%!.
The strong polarization of the electronic component leads to
a damping of the local charge fluctuations, and hence to a
reduction ofSZZ(k). Due to the discrete sampling of the
electronic density in reciprocal space, the curves are noisy
and will not be reproduced here. Again, the presence of a
well-defined first peak and valley inS(k) is an indication
that the fluid is well structured in this region of the parameter
space.

VII. DIFFUSION COEFFICIENTS
AND VIBRATIONAL PROPERTIES

Our AIMD simulations give direct access to the ionic dy-
namics by analyzing the time evolution of atomic coordi-
nates and velocities. Diffusion coefficients have been calcu-
lated using the asymptotic relation^uDr (t)u2&56Dt; i.e., by
measuring the slope of the mean square displacement of the
atoms as a function of time. Our results are displayed in
Table I for r s50.5, r s51, andr s51.2, in reduced plasma
units D*5D/a2vpl , wherev pl(r s)5(3/MI)

1/2r s
23/2 is the

bare ionic plasma frequency. The results are shown in a log-
log plot in Fig. 10. The relationship betweenD* and
G51/(r sT) follows quite accurately a power law of the type
D*5DoG

a. We have fitted our data to such an expression,
obtaining for r s51 the following values:Do5(10.461.4)
and a5(21.3860.07), and for r s50.5 the values:
Do5(4.061.5) anda5(21.3760.09).

It is interesting to note that the diffusion coefficient fol-
lows the same relationship as in the OCP model. The OCP

FIG. 8. ~a! Proton-proton pair distribution function atr s51 and
T5300, 500, 1000, 1500, 2000, 2500, and 7300 K.~b! Integral of
the above distribution function for the same temperatures. The func-
tion N(r ) indicates how many protons are contained in a sphere of
radiusr , on average.

FIG. 9. Proton-proton pair distribution function atr s51 for a
162 H atom sample, as a function of temperature:T51000 K
~solid line!, T52000 K ~dashed line!, andT53000 K ~dot-dashed
line!.

TABLE I. Reduced~dimensionless! diffusion coefficient as a
function of the plasma coupling parameterG. The error in the de-
termination of the diffusion coefficients isDD*50.001.

r s G D* T ~K!

0.5 65 0.0122 10 000
0.5 90 0.0090 7500
0.5 130 0.0052 5000
0.5 210 0.0025 3100
1.0 108 0.0163 3000
1.0 130 0.0119 2500
1.0 163 0.0096 2000
1.0 217 0.0066 1500
1.0 326 0.0034 1000
1.2 136 0.0173 2000
1.2 181 0.0114 1500
1.2 217 0.0072 1000
1.2 272 0.0056 800
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values for the parameters, fitted to classical MD simulations
@51# areDo52.95 anda521.33. The value of the exponent
seems to be unaffected by electronic screening, at least
within the accuracy of our calculations. The prefactor, how-
ever, is clearly enhanced from its OCP value, and this can be
readily understood in terms of the response of the electronic
component to the motion of the protons. A rigid uniform
electronic background~as in the OCP! does not have any
influence on the dynamics of the protons. A polarizable
background weakens the proton-proton interaction thus in-
creasing the mobility of the ions. In fact, the results obtained
at r s50.5 are quite close to the OCP values, represented by
the dashed line in Fig. 10. The difference becomes much
larger atr s51, whereD* differs from its OCP values by a
factor of 3; this contrasts with the Thomas-Fermi MD results
of Zérah, Clérouin, and Pollock@52#, who observed a much
milder effect ~a factor 1.4 atG550 andr s51). Therefore,
the diffusion coefficient appears to be very sensitive to the
treatment of electron screening. The case ofr s51.2 is
slightly different, because the exponent appears to be larger
than the OCP value. However, it can be seen that the error
bars are also compatible with an OCP-like power law, rep-
resented by a line parallel to that of the other densities.

The diffusion coefficient is also related to the ion velocity
autocorrelation function~VACF!, which, in the OCP limit,
exhibits a striking oscillatory behavior due to a strong cou-
pling of the single-particle motion to the collective ionic
plasma oscillations@51#. Such oscillations were recently
shown to persist at finiter s , by MD simulations using the
approximate Thomas-Fermi kinetic energy functional instead
of the Kohn-Sham version@52#. The presentab initio calcu-
lations qualitatively confirm this behavior. In Fig. 11 we
present the VACF for a typical simulation in the solid phase
(T5300 K! and then for three different temperatures in the
fluid phase. The latter were computed in the supercell con-
taining 162 atoms. Finite size effects are not very significant
as regards the general features of the VACF. However, a
small frequency shift is observed, and decorrelation happens
faster in the larger sample. It is interesting to note that the
fastest oscillation, i.e., the one associated with the ion plasma

oscillations, is essentially temperature independent.
The power spectra of the ionic VACF are plotted in Fig.

12 for r s51, at several temperatures. The spectra exhibit a
high-frequency peak~or shoulder at the highest temperature!
at a frequency which amounts to 55% of the bare ion plasma
frequency (v pl). The power spectra forr s50.5 are similar,
with the difference that the high-frequency peak occurs now
at a value which is 70% of the bare plasma frequency@24#.
As expected, electron screening shifts the vibrational spectra
to lower frequencies. Temperature, however, does not affect
the position of the high-frequency peak, which remains the
only well-defined feature at high temperatures, while the rest
of the spectrum merges into a structureless continuum. These
spectra were obtained from 54 H atom simulations. The 162
H atom sample yields a frequency 5% lower than the 54 H
atom one.

FIG. 10. Reduced diffusion coefficient atr s50.5 ~triangles!,
r s51 ~circles!, andr s51.2 ~diamonds! in a log-log plot. Solid lines
are the results of a linear regression fit on the logarithms. The
dashed line is the OCP result.

FIG. 11. Velocity autocorrelation function atr s51 for
T5300 K ~dotted line!, T51000 K ~dashed line!, T52000 K
~dot-dashed line!, andT53000 K ~solid line!. The abscissa~time!
is expressed in units of the plasma frequencyvpl .

FIG. 12. Power spectra of the velocity autocorrelation function
at r s51, obtained by FT the velocity autocorrelation function. The
curve at T5300 K ~solid line! corresponds to the solid phase,
while the remaining curves correspond toT5800 K ~dotted!,
1000 K ~short-dashed!, 2000 K ~long-dashed!, 2500 K ~dot-
dashed! and 7300 K~solid!. These are all in the fluid phase. Fre-
quencies are in units of the ionic plasma frequencyvpl . Curves are
normalized to integrate to the number of ionic degrees of freedom.
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VIII. COLLECTIVE MODES: A SIGNATURE
OF THE METAL-INSULATOR TRANSITION

The oscillations in the VACF point to a long-lived longi-
tudinal collective mode, related to the ionic plasmon mode of
the OCP@51#. We have computed the charge autocorrelation
function

FZZ~k,t !5
1

N
^rZ~k,t !rZ~2k,0!&, ~8.1!

where the Fourier components of the microscopic charge
density are

rZ~k,t !5r i~k,t !2re~k,t !, ~8.2!

with r i and re the AIMD-generated time-dependent densi-
ties. In keeping with the Born-Oppenheimer approximation,
re(k,t) is a Fourier component of the expectation value of
the electronic density for the instantaneous ion configuration.
In practice, we computed the average ofFZZ(k,t) over the
shell of equal-modulusk-vectors

FZZ~k,t !5 (
uku5k

FZZ~k,t !. ~8.3!

From this, we computed the dynamical structure factor
SZZ(k,v) by Fourier transformingFZZ(k,t). In the r s50
~OCP! limit, where the electrons form a uniform~nonpolar-
izable! backgroundSZZ(k,v) which there reduces to the dy-
namical structure factor of the bare ions, is simply the
k-dependent spectrum of the ionic plasma oscillations@51#.
In the long wavelength limit the mode is undamped, and its
characteristic frequency is the ion plasma frequencyvpl .
Adiabatic electron polarization transforms this ionic plasmon
~or optic! mode into an acoustic mode for any finite value of
r s @53,54#. This mode is to be identified with the familiar
low-frequency ion-acoustic mode. Only if the system were
treated as a fully dynamical ion-electron plasma, would the
high-frequency plasma oscillation mode appear, which is re-
lated to the fast electronic motions. This mode is obviously

not accessible by adiabatic MD simulations. The conjectured
scenario is confirmed by the results of our AIMD simula-
tions. The dynamical structure factorSZZ(k,v) was com-
puted for the smallest wave numberk compatible with the
PBC (ka51.031 for the 54 atom system! and for selected
larger wave numbers (ka,3). The resultingSZZ(k,v) for
r s50.5, r s51, and r s51.2 are shown in Fig. 13, for the
smallest available wave number, and at a temperature just
above melting. The sharp peaks are characteristic of the
long-lived ~weakly damped! mode anticipated above. The
peaks shift to lower frequencies asr s increases due to en-
hanced electron screening, and in accord with the behavior of

FIG. 13. Charge-charge dynamical structure factor at the small-
est available wave vector,ka51.031, for three values ofr s .

FIG. 14. Charge-charge dynamical structure factor atr s51 for
different values of momentum:ka50.715 ~solid line!, 1.011~dot-
ted!, 1.238~short-dashed!, 1.599~long-dashed!, 2.022~dot-dashed!,
2.476~diamonds!, and 2.948~crosses!, from a simulation with 162
H atoms. The curves have been obtained by Fourier transforming
the autocorrelation functions~8!, filtering with an appropriate de-
caying exponential those corresponding to the largest wave vectors
in order to reduce noise. All curves are normalized by the static
structure factorSZZ(k)5*0

`SZZ(k,v)dv, such that the area under
every curve is 1.

FIG. 15. Dispersion relation for the collective ion-acoustic mode
in SZZ(k,v), at r s51. Filled circles are points corresponding to the
k vectors allowed by the PBC, in a simulation box containing 162 H
atoms. The solid line is a guide to the eye, arising from a 4th-degree
polynomial fit to the data.

54 779STATISTICAL PROPERTIES OF THE DENSE HYDROGEN . . .



the plasmonlike peak in the spectrum of the VACF~the
single-particle excitation coupled to the collective plasmon
mode!. Thek dependence of the spectrumSZZ(k,v) is illus-
trated in Fig. 14, forr s51; the resulting dispersion curve is
shown in Fig. 15. A striking feature is the nearly constant
width of the resonance peaks forka,1.5, pointing to a
nearlyk-independent damping mechanism. The damping in-
creases dramatically at larger wave numbers, while the dis-
persion curve bends over; the behavior is reminiscent of that
observed for a classical fluid of atoms interacting via an ef-
fective Yukawa potential@54#. The bending over may be
regarded as a remnant of the negative dispersion of the plas-
mon mode observed in the strongly coupled OCP@51#. From
the initial slope of the dispersion relation, we estimate a
sound velocity ofcs'70 km/s atr s51, which is is consis-
tent with the extrapolation of very recent results by Alavi,
Parrinello, and Frenkel to the ultrahigh density regime@31#.
Sound velocities are relevant to the determination of global
free oscillations of Jovian planets, which have been recently
measured for Jupiter@55#.

The remarkable feature is that this collective mode is
much sharper than the usual sound mode observed in metals
at comparable wave numbers. Moreover, the peaks do not
shift significantly with temperature, although they broaden.
However, particularly for low values ofk, the signature of
the collective mode can be detectable up to quite high tem-
peratures~well above 3000 K!. This is seen in Fig. 16, where
we plot the dynamical structure factor forka51.238 ~i.e.,
just before the bending-down point! in the 162-atom sample
at r s51 and for three different temperatures. It is interesting
to note that this is precisely the temperature range where a
transition is expected to occur to the molecular~H2) fluid
phase at lower densities@28#. The observed collective behav-
ior may be regarded as characteristic of the metallic phase of
hydrogen, and is expected to change dramatically at the tran-
sition towards the molecular phase, which begins to show up
at low temperatures atr s'1.3. Therefore, an analysis of
SZZ(k,v) may provide an efficient diagnostic to locate the
plasma phase transition at finite temperature.

IX. CONCLUSIONS

The main conclusions to be drawn from the present
AIMD simulations of the hydrogen plasma in the high-
density (r s<1.2) regime may be summarized as follows:

~a! Due to the significant spacing between the quantized
electronic states in the vicinity of the Fermi surface, theN
dependence of the statistical averages must be treated with
great care, in order to extract meaningful results.

~b! A linear-response treatment of the ion-electron corre-
lations yields reasonable results atr s50.5, but becomes rap-
idly unreliable at lower densities.

~c! The bcc structure, which is the stable low-temperature
solid phase at least up tor s50.5, becomes unstable at lower
densities, where hcp and simple-hexagonal phases appear.
More work is needed to determine the full low-temperature
phase diagram, also including zero-point-motion effects.

~d! The melting temperature drops sharply with decreas-
ing density, due to the enhanced efficiency of electron
screening of the effective interaction between ions. Interest-
ing physics is likely to arise in the region ofr s'1.1 and
T'1002200 K, where the existence of a bcc-hcp~fcc!-
liquid triple point is argued, in a region where quantum ef-
fects in the protons are non-negligible.

~e! The fluid metallic phase behaves very much like a
simple atomic liquid from a structural point of view, but the
longitudinal collective dynamics of the ions retain a strong
plasmalike character at intermediate wave numbers. This re-
flects itself in unusually sharp peaks in the charge-fluctuation
spectrum, which are gradually shifted to lower frequencies
with decreasing density, as a result of electron screening.
The damping, however, appears to be surprisingly insensitive
to density, but is significantly enhanced by temperature. The
acoustic character of the longitudinal mode is recovered at
sufficiently small wave numbers (ka,1), in qualitative
agreement with a simple linear screening picture. A strong
damping of the mode at intermediate wave numbers should
be a clear-cut signature of the plasma-to-molecular phase
transition, which is expected to start atT50 around
r s51.3, and to move to finite temperatures of the order of a
few thousand K at lower densities (r s.1.3) @28#.

~f! The single-particle motion of the ions couples to the
longitudinal collective mode, and reflects itself in a striking
oscillatory behavior of the velocity autocorrelation function,
which is reminiscent of the behavior of the OCP, despite the
action of strong electron screening. The resulting ionic self-
diffusion constant is strongly enhanced at lower densities, for
identical values of the plasma coupling constantG, but fol-
lows a power law similar to that observed in the OCP. The
present AIMD simulations will be extended to lower densi-
ties, in order to characterize the plasma-to-molecular phase
transition, starting from the high density, metallic side.
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